Extensions 1→N→G→Q→1 with N=C3 and Q=M4(2).8C22

Direct product G=N×Q with N=C3 and Q=M4(2).8C22
dρLabelID
C3×M4(2).8C22484C3xM4(2).8C2^2192,846

Semidirect products G=N:Q with N=C3 and Q=M4(2).8C22
extensionφ:Q→Aut NdρLabelID
C31(M4(2).8C22) = M4(2).19D6φ: M4(2).8C22/C4.D4C2 ⊆ Aut C3488-C3:1(M4(2).8C2^2)192,304
C32(M4(2).8C22) = M4(2).21D6φ: M4(2).8C22/C4.10D4C2 ⊆ Aut C3488+C3:2(M4(2).8C2^2)192,310
C33(M4(2).8C22) = M4(2).31D6φ: M4(2).8C22/C2×M4(2)C2 ⊆ Aut C3484C3:3(M4(2).8C2^2)192,691
C34(M4(2).8C22) = (C6×D4).16C4φ: M4(2).8C22/C2×C4○D4C2 ⊆ Aut C3484C3:4(M4(2).8C2^2)192,796


׿
×
𝔽